Skip to main content

How to project a camera plane A to a camera plane B

How to Create a holographic display and camcorder

In the last part of the series "How to Create a Holographic Display and Camcorder", I talked about what the interest points, descriptors, and features to find the same object in two photos.

In this part of the series, I'll talk about how to extract the depth of the object in two photos by calculating the disparity between the photos.

In order to that, we need to construct a triangle mesh between correspondences.

To construct a mesh, we will use Delaunnay triagulation.




 Delaunnay Triagulation




- It minimizes angles of all triangles, while the sigma of triangles is maximized.

The reason for the triangulation is to do a piece wise affine transformation for each triangle mapped from a projective plane A to a projective plane B.

A projective plane A is of a camera projective view at time t,
while a projective plane B is of a camera projective view at time t+1.
(or, at t-1.  It really doesn't matter)


Piece wise Affine Transformation

For that, we need at least 3 correspondences.  Why?

Because Affine transform support 6 DoF (degrees of freedom).


Why do piece-wise affine transform?

Because a full rectangular affine transform doesn't fit a convex rectangular form.



Why do homography?



What we just did is called Homography.


Ah = 0




With it, we can project a projective plane to any projective plane.


Comments

Anonymous said…
This comment has been removed by a blog administrator.
dparksports said…
This comment has been removed by the author.
Rich said…
This comment has been removed by a blog administrator.
dparksports said…
This comment has been removed by the author.
Rich said…
This comment has been removed by a blog administrator.
dparksports said…
This comment has been removed by the author.
Rich said…
This comment has been removed by a blog administrator.
Rich said…
This comment has been removed by a blog administrator.
Rich said…
This comment has been removed by a blog administrator.
Rich said…
This comment has been removed by a blog administrator.
dparksports said…
This comment has been removed by the author.
Anonymous said…
This comment has been removed by a blog administrator.
Big B said…
This comment has been removed by a blog administrator.
Anonymous said…
This comment has been removed by a blog administrator.
Anonymous said…
This comment has been removed by a blog administrator.
Anonymous said…
This comment has been removed by a blog administrator.
Anonymous said…
This comment has been removed by a blog administrator.
Anonymous said…
This comment has been removed by a blog administrator.
Anonymous said…
This comment has been removed by a blog administrator.
Anonymous said…
This comment has been removed by a blog administrator.
Anonymous said…
This comment has been removed by a blog administrator.
Anonymous said…
This comment has been removed by a blog administrator.
Anonymous said…
This comment has been removed by a blog administrator.
Anonymous said…
This comment has been removed by a blog administrator.
Anonymous said…
This comment has been removed by a blog administrator.
Anonymous said…
This comment has been removed by a blog administrator.
Anonymous said…
This comment has been removed by a blog administrator.

Popular posts from this blog

How to create a holographic camcorder

Since the invention of a camcorder, we haven't seen much of advancement of a video camcorder. Sure, there are few interesting, new features like capturing video in 360 or taking high resolution 4K content. But the content is still in 2D and we still watch it on a 2D display. Have you seen the movie Minority Report (2002)? There is a scene where Tom Cruise is watching a video recording of his lost son in 3D or holographically. Here is a video clip of this scene. I have been waiting for the technological advancement to do this, but it's not here yet. So I decided to build one myself. In order to build a holographic video camcorder, we need two devices. 1) a video recorder - a recorder which captures the video content in 3D or holographically. 2) a video display - a display device which shows the recorded holographic content in 3D or holographically. Do we have a technology to record a video, holographically. Yes, we can now do it, and I'll e...

How to reduce TOF errors in AR glasses

In this blog, I will describe how we reduced the noise of the Time-Of-Flight sensor in our AR glasses prototype. Types of noise - systematic noise    note: caused by imperfect sinusoidal modulation - random noise    note: by shot noise. use bilateral filtering Motion artifacts reduction note: when motion is observed on a target object, we have motion artifacts observed in the tof sensor.  This happens when TOF measurement is recorded sequentially.  And, this causes doppler effects. fix: - use Plus and Minus rules    -- reference:        1) "Time of flight motion compensation revisited"  (2014)        2) "Time of flight cameras: Principles, Methods and Applications" (2012) Physics-based MPI reduction fix: - use 2K+1 frequency measurements for K inferencing paths in absence of noise. Per-pixel temporal processing of raw ToF measurements fix: - matrix pencil method - Prong's met...