Skip to main content

Time of Flight Depth Sensor (ToF) - Pros and Cons

Pros

- Lightweight
- Full frame time-of-flight data (3D array) collected with a single laser pulse
- Unambiguous direct calculation of range
- Blur-free imager without motion distortion
- Co-registeration of range and intensity for each pixel
- Perfectly registered pixels within a frame
- Ability to represent the camera-oblique objects
- No precision scanning mechanism required
- 3D flash LIDAR with 2D cameras (EO and IR) to combine 2D texture over 3D depth
- Multiple 3D flash LIDAR cameras for full volumetric 3D scene
- Lighter and smaller than point scanning systems
- Non-moving parts
- Lower power consumption
- Ability to scan through range-gating, natural obscurants

Comments

Popular posts from this blog

How to project a camera plane A to a camera plane B

How to Create a holographic display and camcorder In the last part of the series "How to Create a Holographic Display and Camcorder", I talked about what the interest points, descriptors, and features to find the same object in two photos. In this part of the series, I'll talk about how to extract the depth of the object in two photos by calculating the disparity between the photos. In order to that, we need to construct a triangle mesh between correspondences. To construct a mesh, we will use Delaunnay triagulation.  Delaunnay Triagulation - It minimizes angles of all triangles, while the sigma of triangles is maximized. The reason for the triangulation is to do a piece wise affine transformation for each triangle mapped from a projective plane A to a projective plane B. A projective plane A is of a camera projective view at time t, while a projective plane B is of a camera projective view at time t+1. (or, at t-1.  It really doesn't matter)...

How to create a holographic camcorder

Since the invention of a camcorder, we haven't seen much of advancement of a video camcorder. Sure, there are few interesting, new features like capturing video in 360 or taking high resolution 4K content. But the content is still in 2D and we still watch it on a 2D display. Have you seen the movie Minority Report (2002)? There is a scene where Tom Cruise is watching a video recording of his lost son in 3D or holographically. Here is a video clip of this scene. I have been waiting for the technological advancement to do this, but it's not here yet. So I decided to build one myself. In order to build a holographic video camcorder, we need two devices. 1) a video recorder - a recorder which captures the video content in 3D or holographically. 2) a video display - a display device which shows the recorded holographic content in 3D or holographically. Do we have a technology to record a video, holographically. Yes, we can now do it, and I'll e...

How to train a neural network to retrieve 3D maps from videos

This blog is about how to train a neural network to extract depth maps from videos of moving people captured with a monocular camera. Note: With a monocular camera, extracting the depth map of moving people is difficult.  Difficulty is due to the motion blur and the rolling shutter of an image.  However, we can overcome these limitations by predicting the depth maps by the model trained with a generated dataset using SfM and MVS from the normalized videos. This normalized dataset can be the basis of the training set for the neural network to automatically extract the accurate depth maps from a typical video footage, without any further assistance from a MVS. To start this project with a SfM and a MVS, we will use TUM Dataset. So, the basic idea is to use SfM and Multiview Stereo to estimate depth, while serves as supervision during training. The RGB-D SLAM reference implementation from these papers are used: - RGB-D Slam (Robotics OS) - Real-time 3D Visual SLAM ...